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In this paper we present a general method for calculating the hydrodynamic loads 
(forces and moments) acting on a deformable body moving with six degrees of 
freedom in a non-uniform ambient potential flow field. The corresponding expressions 
for the force and moment are given in a moving (body-fixed) coordinate system. The 
newly derived system of nonlinear differential equations of motion is shown to possess 
an important antisymmetry property. As a consequence of this special property, it is 
demonstrated that the motion of a rigid body embedded into a stationary flow field 
always renders a first integral. In a similar manner, we show that the motion of a 
deformable body in the presence of an arbitrary ambient flow field is Hamiltonian. A 
few practical applications of the proposed formulation for quadratic shapes and for 
weakly non-uniform external fields are presented. Also discussed is the self-propulsion 
mechanism of a deformable body moving in a non-uniform stationary flow field. It 
leads to a new parametric resonance phenomenon. 

1. Introduction 
One of the classical problems in fluid mechanics is that of evaluating the hydro- 

dynamic reactions on a rigid body moving unsteadily in an unbounded perfect fluid 
which is otherwise at rest. The elegant Kirchhoff-Lagrange formulation expresses 
the forces and moments acting on such a body in terms of its six velocities and 
the added-mass tensor (e.g. Lamb 1945, Ch. 6; Kochin, Kibel & Rose 1964, Ch. 7; 
Milne-Thomson 1968, Ch. 17). These equations generalize the Euler equations of 
motion of a rigid body in vacuum. The resulting dynamic system consists of six 
ordinary differential equations, written in a coordinate system moving with the body. 
One of the remarkable properties of the Kirchhoff equations is that they account for 
the influence of the fluid (an infinite-dimensional system) only through an additional 
tensorial parameter (the added-mass tensor), depending on the body’s geometry. The 
same method can also be directly extended to the case of a body embedded in a 
uniform flow, by virtue of the Galilean invariance principle. 

However, the problem of generalizing the Kirchhoff formalism for a body moving 
in an arbitrary non-uniform ambient flow field is far from being trivial and has not 
yet been resolved. So far, only the case of a weak flow non-uniformity (i.e. when 
the characteristic length scale of the flow non-homogeneity is much larger than the 
characteristic length scale of the body) has been considered (first by Taylor 1928) for 
a stationary rigid body placed in a steady ambient flow. Recently Galper & Miloh 
(1994) provided an extension of the Kirchhoff-Lagrange method for deformable 
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shapes moving with six degrees of freedom in a time-dependent weakly non-uniform 
imposed flow field. 

The purpose of this paper (motivated by recent developments in bubble dynamics 
and other dispersed systems) is to present a concise analysis of the hydrodynamical 
problem corresponding to a deformable body moving unsteadily in an arbitrary time- 
dependent ambient perfect flow field. Using the momentum approach, we derive a 
new dynamical system of equations which govern the motion of a deformable body in 
an arbitrary non-uniform flow field which can still be reduced to a set of six nonlinear 
ordinary differential equations of the second order. The effect of flow non-uniformity 
enters into the formulation through an explicit dependence of the various coefficients 
on a quadratic vector functional of the external velocity field V .  There is another term 
representing the coupling between the velocity of the body and some linear functional 
of V .  For the case of a quiescent flow field (i.e. V = 0), these two terms vanish and 
the classical form of the Kirchhoff-Lagrange equation (e.g. Milne-Thomson 1968, eq. 
17.43) is recovered. On the other hand, if the flow non-uniformity is assumed to be 
weak, the recently derived expressions of Galper & Miloh (1994) are readily obtained 
as a limiting case. 

It is demonstrated below, that this dynamical system of equations (governing the 
motion of a deformable body in an arbitrary non-uniform flow), possesses some 
important antisymmetric property. As a direct consequence of the special symmetry 
of the dynamical system we prove the existence of a first integral of motion for a 
rigid body moving in a stationary non-uniform stream. This first integral is shown 
to be compatible with an energy conservation principle expressed in Lagrangian 
coordinates. In turn, it points to the possibility of using Hamiltonian formalism to 
describe the motion of a deformable body in a non-uniform flow field. The possibility 
of expressing the Kirchhoff equations (in the absence of an imposed flow) in a 
canonical Hamiltonian form was first demonstrated by Lamb (1945, Ch. 5). To the 
best of our knowledge, the exact form of the Hamiltonian for a deformable body 
moving in an arbitrary non-uniform flow field, is presented here for the first time. 

The Kelvin impulse and Kelvin-impulse couple of the motion of the surrounding 
fluid, induced by the body, here play the role of the generalized impulses in the 
corresponding Hamiltonian formalism. The present Hamiltonian formalism may be 
found useful in the statistical approach to the theory of bubbly liquids (e.g. Zhang & 
Prosperetti 1994) and for studying the stability of bubble motion. It should be men- 
tioned that a more restricted Hamiltonian formalism has been previously employed 
by Benjamin (1987) in analysing the motion of a deformable bubble embedded in 
a quiescent fluid. The existence of the first integral also implies that the body’s six 
velocities are all bounded and suggests, among other things, a qualitative physical 
model for estimating the magnitude of the hydrodynamic ‘spreading’ of rigid particles 
suspended in a non-uniform ambient flow field. 

The general formulation of the problem is outlined in 92. The dynamical system 
of ordinary differential equations, which govern the motion of a deformable body, is 
then obtained in 93 (see also Appendices A and B). Some important antisymmetric 
properties of the resulting matrices are derived and their physical consequences are 
discussed. The corresponding equations of motion for the case of a deformable body 
moving in a weakly non-uniform flow field are then obtained in 94 as a limiting case of 
the general dynamical system. Several other physical examples concerning impulsive 
bubble dynamics and some new effects of self-propulsion of deformable shapes are 
presented and analysed in $5. An energy-based approach is further elaborated in 
9638 .  Thus, by utilizing the fact that the coefficient matrix in the governing equations 
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of motion in $3 is antisymmetric, we derive in $6 the first integral of motion for the 
case of a rigid body moving in a stationary flow field. 

The present Hamiltonian framework, is further extended in 97 where we derive 
explicit expressions for the Hamiltonian and for the corresponding conjugated vari- 
ables for a deformable body embedded in a time-dependent flow field. Appropriate 
bounds on the body’s velocity, as well as some useful expressions for estimating the 
rate of ‘solid spreading’ are obtained in $8. The aforementioned formulation is finally 
applied in 99 for ellipsoidal and spherical shapes, which are frequently encountered 
in bubble dynamics. A compact degenerate form for the equations of motion of a 
sphere immersed in an arbitrary flow field is then found in a format equivalent to that 
corresponding to the motion of a rigid particle in an effective potential force field. 
The motion of a rigid sphere in a non-uniform stream with spherical symmetry is 
proven to be completely integrable. Other general results, pertinent to the dynamics 
of rigid and deformable shapes in a non-uniform flow field, including the interesting 
effect of self-propulsion, are also presented. 

2. General formulation and kinematic preliminaries 
2.1. Force and moment loadings 

Consider an arbitrary unsteady irrotational flow of an incompressible liquid past a 
moving deformable body, with an ambient stream V = V&X,t). The rectilinear 
velocity of the body’s centroid is U ( t )  and the angular velocity of its principle axes 
is denoted by a ( t ) .  Measured in a body-fixed coordinate system, the time-dependent 
surface of the deformable body is given by the equation S(x , t )  = 0, where x is 
a Cartesian vector taken in the body-fixed coordinate system. Thus, the normal 
component of the surface-deformation velocity Vd( t )  is defined correspondingly as 

where the dot represents differentiation with respect to time. The body is instanta- 
neously introduced into an ambient stream V = V4, such that the body’s centroid 
lies at the point X and there are no field singularities of the imposed flow inside the 
body. 

The total velocity potential cp, induced by the presence of the moving deformable 
body, can be decomposed into 

where 4 represents the additional disturbance potential satisfying a proper decay 
condition at infinity, i.e. 

cp=4+4, (2.2) 

lim 4(x) = 0. (2.3) 
Ixl-+m 

The impermeable boundary conditions on the deformable surface S ,  are 
It is important to note that 4 is harmonic outside S and 4 is harmonic inside S. 

(2.4) - _  - ( U + a A x +  Vd)’n, 
dn 

where n denotes a unit normal vector to S ( t )  directed outward into the fluid. We use 
the symbol A for a vector product. 

Let us next introduce the outer Green function G(OUt)(x,y) (depending only on the 
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body’s geometry) which represents the solution of the following Poisson equation : 
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(2.5) 
2 (our) V G (x,Y) = 4 ~ d ( x - ~ y ) .  

The corresponding boundary conditions supplementing (2.5) are written 

One can also express $ in the common Kirchhoff manner, as a linear decomposition 
of unit time-dependent potentials, 

where $0 denotes the potential response of a stationary body. The decomposition 
(2.7) is subject, by virtue of (2.4), to the following boundary conditions on S ( t ) :  

and a proper decay at infinity. 
It is important to note that both $ and $o can be expressed only in terms of the 

body’s geometry and the values of the ambient flow field V taken on the body’s 
surface, i.e. 

$o(x) - G ( o u r ) ( x , ~ ) V ( ~ )  . ~(Y)~S( .V) .  

We prove further that (2.9) implies that the present dynamical problem comprising 
an interacting body with a fluid which is basically an infinite-degree system, can 
be generally reduced to a 12 degree system (i.e. 6 generalized coordinates for the 
body’s position and 6 generalized velocities prescribing the body’s motion), where 
the equation of the body’s surface and the flow field V play the role of the ambient 
time-dependent parameters. 

Here and in the sequel we will use bold faced letters to denote vectors. Tensors are 
designated by bold sans serif. For brevity we will also select the density of the fluid 
to be unity, i.e. pf = 1. 

The equation S ( x , t )  = 0 of the body’s surface is given in a coordinate system at- 
tached to and moving with the body centroid, which leads to the following geometrical 
restrictions on S (see Miloh & Galper 1993): 

(2.9) I 

l x i & d S  = 0, l x i x j m d S  s = 0, i # j = 1,2,3, (2.10) 

implying that both the position of the body’s centroid and the directions of its 
principal axes are preserved. 

The hydrodynamic force I; and moment M acting on a deformable body immersed 
in the potential fluid V = V4, can then be expressed in the moving system (e.g. 
Batchelor 1967) as 

and 

(2.11) 

(2.12) 
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where the moment is evaluated about the body's centroid X. The corresponding 
expressions for the 'steady' force and moment are 

(Vcp)2n dS - Vcp(Vcp .n) dS, 1 (2.13) 

and 

M - - (V(P)~(X A n) dS - x A V ( V q  n) dS. (2.14) 

Using the decomposition (2.2) one can express F,, and M,, in terms of the cross- 
products of 4 and $. Indeed, after the substitution of (2.2) into (2.13) and enforcing 
the Green formula, one gets 

A 1 (V4)2n dS- V4(V4  - n) dS = 0, 11 (V$fn dS- V$(V$ n) dS = 0, 

4 1  1 

2 s  1 2 s  1 
1 S 

JG 

(2.15) 

F , , =  ( V *  f i ) n d S - S ( Y ( f i . n ) + f i ( Y . n ) )  dS, (2.16) 

where fi = V$. Using the Gauss theorem within the volume v of the body and 
interpreting A$ as a sum of &functions and their derivatives, one gets 

L( V * f i ) n  dS = (V * ($VV) + V * Vfi )  dv. 

Substituting (2.17) into (2.16) leads then to the desired expression 

which lead to 

(2.17) 

In a similar manner, the steady moment can be written as 

(2.18) 

(2.19) 

Making use of the Green theorem within v for (2.18) and (2.19) yields the classical 
Lagally expressions for the 'steady' force and moment (see Galper & Miloh 1994). 

2.2. Moving coordinate system 
The dynamical variables U ,  i2 and V are all measured in the laboratory (inertial) 
coordinate system and when substituted into (2.11) and (2.12), must be transferred to 
the moving (body-fixed) coordinate system. Correspondingly, in order to distinguish 
between the two systems, an asterisk will be used in what follows to denote a tensor 
referred to the laboratory coordinate system. 

We introduce an orthogonal operator Q(t)  (a 3 x 3 matrix), which instantaneously 
connects the body-fixed and the laboratory coordinate systems by the following 
transformation : 

Here i represents a unit matrix, the superscript T represents transpose operation, 
a' denotes an arbitrary vector measured in the laboratory system and a is the same 
vector referred to the body-fixed coordinate system. In a similar way one also has 

QQT = i, a* = Q(t)a, a = QT(t)a'. (2.20) 

V' = Q V ,  E' = vx. ~ ' ( x ' )  = Q E Q ~ ,  (2.21) 
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where E' and E are the rate-of-strain tensors of the ambient flow evaluated in the 
laboratory and moving coordinate system respectively. It is also recalled that 0' = Q. 

At this stage we choose to use isomorphism z between 3-vectors and 3 x 3 anti- 
symmetric matrices (e.g. Marsden 1992), defined as 

z(a) = A ;  Aik = - q k l a l ,  with the inverse z- ' (A)  = a;  a[ = - Z ~ i k p 4 i k ,  (2.22) 1 

where eijk is the permutation tensor. It can be thus shown that 

- = Q & ;  dQ and ~ dQT =-&QT, 
dt dt 

(2.23) 

where the 3 x 3 antisymmetric tensor h is defined below as 
A A 

R = z(Q), and hence Ra = R A a. (2.24) 

Note, that under the constraints (2.10), one can consider the variables X = QX' and 
Q (see Aref & Jones 1993) combined with the prescribed surface equation S(x, t) = 0 
as the generalized coordinates of the deformable body. The orthogonality of Q must 
be treated in this case as a weak constraint imposed on the system (see Dirac 1964). 

The initially prescribed flow field V' is determined at points X' + x* of the labo- 
ratory coordinate system. To evaluate the same vector V at points x in the attached 
system, one has to first construct the corresponding point Qx in the laboratory sys- 
tem, find the vector V * ( Q x )  and then map it, using the operator Q T ,  back into the 
body-attached (moving) system, namely 

V ( x ,  t) = QT V' (X*(t) + Qx, t) . (2.25) 

Finally, taking the absolute time derivative of (2.25) leads to 

d av 
dt a t  
- V ( X ,  t )  = - - R A V + EU + E(Q A x), (2.26) 

which, for E = 0 (i.e. for a uniform external flow), reduces to the well-known rela- 
tionship between accelerations measured in inertial and rotating coordinate systems. 

3. The dynamical system of equations of motion 
3.1. The classical Kirchhofl equations for a deformable body 

The classical Kirchhoff equations govern the motion of a rigid body in a quiescent 
flow (e.g. Milne-Thomson 1968, Ch. 17). In this section we present a generalization 
of the classical Kirchhoff equations for the case of a deformable body moving in an 
arbitrary imposed perfect flow field. 

Consider a deformable body embedded in a surrounding fluid which is otherwise at 
rest. The corresponding Kirchhoff force and moment equations can then be written 
(see Appendix A) as, 

Here -F(q) and denote the external force and moment exerted on the body 
expressed in the attached coordinate system, / is the body's inertia tensor, pb is the 
specific density of the homogeneous body and u is the volume of the body. The force 
F(q)  and the moment M(') can be naturally split into a force F[:; and a moment M;:)), 
which arise from the rigid body motion, and a force FiZ; and a moment Mix which 
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The exact expressions for the various components in (3.2) are given (see Appendix 
A) in terms of the Kelvin impulse as 

(3.3) 
d F$)) = %(MU + ZQ) + Q A ( ( u p b i  + M)U + ZQ), 

d 
dt 

MI$ = -(ZTU 4- RQ) + A (ZTU + (R  +/)a) + u A (MU + 2 0 )  (3.4) 
and 

The Kelvin impulse K ( 4 )  and the Kelvin-impulse couple P ( 4 )  for any potential 4 are 
defined as 

K ( 4 )  G - 4ndS, P ( 4 )  - 4 ( ~  An)dS. I I (3.7) 

We have also introduced in the above the following 6 x 6 symmetric added-mass 
tensor of the body 

(Lamb 1945, Ch. 5). Here M denotes the rectilinear, Z is the coupled (linear-angular) 
and R is the rotational added-mass tensor, defined as 

For future use we define the tensor densities m(x)  and z(x) by 

mij(x)  = Gi(x)nj(x); zij(x) = Yi(x)nj(x). (3.10) 
It is clear that the deformation potential vanishes for a rigid body (i.e. (bd = 0) and 
thus F(4)  - MI;,) = 0. Equations (3.1) reduce then to the classical Kirchhoff equations 
given, grexample by equation (17.43) of Milne-Thomson (1968). 

Let us introduce next the generalized impulses, defined as 

p (Upbi + M)U + zf2 + K($d), 1 ZTU + (1 + R ) Q  + P(4d). (3.11) 

The classical Kirchhoff equations (3.1)-(3.6), which govern the motion of a deformable 
body in a quiescent medium, can then be written in terms of p and 1 as 

(3.12) dP dl 
- + Q A p = O  and - + + A f + U A p = O .  
dt dt 

It is important to note that the generalized impulses introduced above are in fact just 
the momentum (angular momentum) of the body plus the Kelvin impulse (Kelvin- 
impulse couple) induced in the fluid due to motion and deformation of the body. 

3.2. The generalized Kirchhofl equations 
It is shown in what follows that the generalized Kirchhoff equations, corresponding 
to the case of a deformable body moving in an imposed non-uniform flow, can be 
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expressed in the following compact form: 
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I(PbVLI) I + 1 F") I = lA(x,g) B ( X , Q )  U 
dt (152) M(4) C ( X , Q )  D(X,Q)  1 /n 1 -I- 

where the matrices A, 6, C, and D depend on the body's geometry and are linear 
vector functionals of the ambient flow field V (evaluated on S(t)). The last terms 
F(O) and McO) in the right-hand side of (3.13) are quadratic vector functionals of V 
and respectively represent the force and moment acting on a stationary deformable 
body, due to its interactions with the ambient stream V .  Clearly, in the absence of 
an external flow field (i.e. V = 0), the right-hand side of (3.13) is equal to zero and 
(3.13) reduces to the familiar form of (3.1). 

Next we prove that the coefficient matrix field in (3.13), 

(3.14) 

is an antisymmetric one, i.e. 
(3.15) w = - w .  

According to Appendices B and C it is first noted that the two-index matrices 
A, B, C, D can defined in terms of the density matrices mik and zik given by (3.10) as 

T 

A = J! (EmT - mE) dS, 

(z(m V )  - mv + mEX + Ez*)  dS, 

( ~ ( m  V )  - Ym + XEmT - z E )  dS, 

(3.16) 

(3.17) 

(3.18) c = L  
where following (2.22) 

V = z( V )  = V A (.), X = T(X) = x A (.), and z ( m V )  = ( m  V )  A (.). (3.19) 

Finally, D is given by 

where 
D = d A (.), 

d E L ( F A  n ( x A  a V )  + z V  

(3.20) 

(3.21) 

Acting on (3.21) with a/an, one can also express the vector d in an alternative form 

d = ((z + zT - Tr(z)) V + (EzT - Tr(EzT)) x) dS. L (3.22) 

It follows then immediately from (3.16)-(3.20) that 

A = - A  T , D = - D  T , and C T = - 6 ,  (3.23) 

which yields the desired antisymmetry property (3.15). The physical reason for this 
antisymmetricity results from the fact that a body embedded in an irrotational inviscid 
stream represents a 'passive' system, i.e. it can only absorb energy but cannot generate 
it. Thus, the existence of an eigenvalue of W with a non-zero real part (in the case of 
a rigid body embedded in a stationary flow field) leads to non-conservation of energy 
(see 96). 
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It is worth noting that the matrix A depends only on the rate-of-strain tensor E 
whereas the matrices 6, C and D depend in addition on the velocity field V .  The 
antisymmetric tensor A can be also written in the ‘magnetic’ form as 

AU = - (VX AK(&)) A U ,  (3.24) 

where 

K(ho)  = - l n& dS = 1 @(n V )  dS, (3.25) 

is the Kelvin impulse of the fluid motion induced as a result of introducing a stationary 
body into the ambient stream V .  The gauge invariance of K(&) is already accounted 
for, due to the fact that K(&) is solenoidal, i.e. 

VX K(4o) = 0. (3.26) 

One can also see that the body’s shape deformations contribute to (3.16)-(3.20) only 
through the time-dependence of S and the Kirchhoff potentials @ and Y .  Thus, there 
is basically no coupling between the rigid body motion and the body’s deformation. 

The force components AU and DR are orthogonal to U and 52 respectively and 
therefore, are of a ‘lift-like’ type. On the other hand, the forces 6 0  and CU have 
components both in the orthogonal direction and in the directions of R and U .  Such 
forces induce, in general, a spiralling motion of the body (similar to the precession 
of a charged particle in a magnetic field, see for example Landau & Lifshitz 1989, 
$21). To illustrate this effect let us consider the rectilinear motion (i.e. R = 0) 
where IUI >> I VI (the so-called ‘fast body’ assumption). In this case the force 
F(O) (quadratically depending on V )  can be neglected in comparison with the force 
A U  (linearly depending on V ) .  The governing equation (3.13), reduces now to the 
following form : 

h 

(3.27) 

For a constant A, the corresponding motion of the body is a rectilinear one in the 
direction of the vector z-’(A), combined with a rotation in the plane orthogonal to 
z - ’ ( A )  imposed on an elliptical trajectory. The resulting spiralling motion is related 
to the work of Saffman (1956, p. 253) (see also Benjamin 1987, Ch. 5),  who claimed 
‘a bubble could usually be made to spiral ... by placing an obstacle ... in the path of 
the bubble’. A possible explanation for this phenomena is that the presence of an 
obstacle in a stream generally leads to some sort of flow field non-uniformity. In turn, 
it results in an additional non-zero force AU which acts on the bubble. 

3.3. Force and moment acting on a stationary body 
All terms in (2.11), (2.12), (2.18) and (2.19) which depend on V but are independent of 
U and 0, should be incorporated into the expression for the force I;(’) and moment 
M(O) acting on a stationary body embedded in a non-uniform flow field V .  These can 
also be written in a similar manner to (3.2) as 

I;@) I;(0) ( r )  + F(O) (4, and M(0) M(O) ( r )  + M(0) (4, (3.28) 

where the subscripts ( r )  and (d )  denote, as before, rigid and deformable contributions 
respectively. The force FI:/ is given in accordance with (2.11) and (2.18) by 

dU 
( ~ p b l +  M)- = AU. 

dt 

(3.29) 
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Taking then into account that (for a stationary body) 

- I % V d S =  EVdv, and $ n d S = -  (3.30) 1 
we finally obtain by using the Gauss theorem 

(3.31) 

where we have introduced in the above the substantional derivative symbol, D/Dt = 
a /& + V * V (denoting the liquid acceleration measured in the moving coordinate 
system). Equation (3.31) is not more than a variant of the statement 

Fi:; = - ( p  + p)n dS, (3.32) 

is the additional pressure due to the instanta- 

A similar expression is obtained for the moment Mi:;, by using (2.12) and (2.19), 

I 
where p is the ambient pressure and 
neous introduction of the body into the ambient stream. 

i.e. 

The deformation parts of the force F!:! and moment MF), which arise due to the 
interaction of the deformation potential (bd with the ambient flow field, are further 
obtained as 

The time differential operator 6 /6 t acts here only on time-dependent variables result- 
ing from pure deformations. 

Recalling (2.1) and (2.8) and using the Transport theorem, lead to 

dS; -bgV dS = -V dS, h I A  
(3.35) 

from which one finally obtains 

A similar expression can be derived for Mlil: 

(3.36) 

(3.37) 

Clearly, for a rigid body (bd = 0 and 6/6t = 0, which implies that in this case Fi;! = 0 
and M f )  = 0. 

The force F(O) is in general not of a potential type, namely, 

(3.38) 

Therefore for a stationary ambient flow field the force Fi:j) is a potential one and 

F( , )  (0) - - - v x ~ ( X ,  Q), (3.39) 



Dynamic equations of motion for  a body in a potential $ow jield 101 

where the effective potential is given by 

(3.40) 

It follows then from (3.40) that n ,< 0, since the last integral is always negative. 

4. Forces in a weakly non-uniform flow field 
In many practical cases it is justifiable to assume that the characteristic length scale 

of the non-uniformity of the ambient flow field V is much larger than the characteristic 
length scale d of the body (the so called ‘weak-straining’ field approximation). As a 
direct consequence of this weakly non-uniform flow assumption, one can keep only 
the first two terms in a Taylor expansion of V about the body centroid X ,  namely 

V ( X  + x, t )  = V ( X ,  t )  + E(X, t )x  + O ( E 2 ) .  (4.1) 

There exists therefore a small parameter E ,  which can be expressed in terms of the 
strain tensor E ,  as 

I l V W  
IlEll ’ 

c = -  

where I I (  .)I I denotes the norm of the tensor 
The substitution of (4.1) in (3.16) for A and in (3.17) for B, gives 

AU = (ME - E M ) U ,  (4.3) 

and 
1 
2 

Bfi = M( Vo Af2)  - MVo A f i  - EZf2 + i ( S : E )  A n  - -S : (€A - A€), (4.4) 

where we define the third-order tensor S (a purely geometrical parameter depending 
on the shape of the body), as 

The convolutions in (4.4) are denoted by (S : E)i = SijkEjk and (S : (Eh - hE))i = 
Sijk(Ejpapk - QjpEpk). Also recall that according to (2.22) a p k  = -Epkqaq. 

What remains now to do is to evaluate the free force F(O) (3.28), for which one can 
use (3.31) for the ‘rigid’ part F[:;, resulting in 

4oEndS + EVdv = E &ndS + E l‘  i l 
= - E  QiV ndS + U E  Vo + 0(c2)  = E(M + v f ) V o  + O(E’). (4.6) 1 

In addition, one obtains from (3.31) 

av  ^ a v  1 aE 
l g d v  - @n - tdS = (M + v1)- a t  - -S 2 : - a t  + 0(c2) ,  (4.7) 

and correspondingly for the deformation part of the force (3.36), 

6M 1 6 s  2 Qin * VdS = EK(4d) + - V O  - -- : E + O ( E  ). (4.8) 6t 2 6t 
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Equations (4.3) to (4.8) are identical with the corresponding expressions, recently 
derived by Galper & Miloh (1994, eqs. (3.25) and (3.26)) for the force acting on a 
deformable body moving in a weakly non-uniform ambient flow field. Thus, the 
expression for the part F[:;,e of the force F[:; which arises due to the interactions 
between the rigid body's motion and the non-uniformity of the imposed stationary 
stream, takes the form 

F(O) (rLe = (ME - EM)U + E(MV0 + u V O  - Zf2) - i f 2  A (S : E )  - i(S : (€a - h)). (4.9) 

Substituting (4.1) in (3.33) and (3.37), we rederived in a similar manner the corre- 
sponding expression for the moment acting on a body placed in a weakly non-uniform 
flow field, recently obtained by Galper & Miloh (1994, eqs. (4.29)-(4.31)). 

For the particular case where the ambient flow field is linear, i.e. 

V ( X ,  t )  = VO(t) + E(t)X,  (4.10) 

(4.9) is an exact statement except for an additional term (arising from (3.31)), namely 

- $E(S : E). (4.11) 

For a rigid body with three mutually orthogonal planes of symmetry, one gets 
Z = 0 and S = 0. Thus, at least yithin the realm of the weakly non-uniform flow 
assumption, the angular velocity f2 does not directly interact with the rate-of-strain 
tensor E. 

5. Applications to bubble dynamics 
5.1. Impulsive motion 

In some problems of bubble dynamics it is of interest to evaluate the velocity of 
the bubble resulting from an impulsive motion of the surrounding liquid with an 
instantaneous velocity distribution V(x) (Wijngaarden 1976). In order to determine 
the impulsive nature of the body's motion, we integrate (3.13), with the right-hand 
side given by (3.16) to (3.20) and (3.31) to (3.33), from t = 0- to t = O+ (i.e. at the 
instant when the liquid has been set impulsively into motion). By keeping only terms 
with a partial time-derivatives one can then derive the following set of equations 
which are in fact equivalent to a statement concerning the conservation of both the 
impulse P b  = ~ ( 4  + $1 and the impulse couple, namely l b  = ~ ( 4  + $1 

F 

( u p b i  + M)U + Zf2 = 1 Vdu - J, @n VdS, 

and 
P F 

For ellipsoidal shapes the Kirchhoff potential @ may be expressed according to 
Lamb (1945, Ch. 5) as 

@ 1 =- -Mx  l I  
Is Is 

Using (5.3), one gets 

(5-3) 
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For a spherical bubble ( P b  = 0), it immediately leads to Wijngaarden’s (1976) result 
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u = 3V, ,  (5.5) 

where V ,  denotes the value of the velocity field at the sphere’s centre. 
Since among the set of all smooth convex three-dimensional bodies with a pre- 

scribed volume, the spherical shape has the minimum trace of the added-mass tensor 
(e.g. Shiffer 1975), we may conclude that the minimum velocity acquired by the bubble 
due to the impulsive motion of the ambient fluid, is given by U = (3 / v )Jv  Vdv. This 
velocity is precisely attained for a spherical shape. According to (5.2), a non-spherical 
body may acquire in addition an angular velocity. 

5.2. Self-propulsion in a non-uniform flow jield 
Let us next discuss the intriguing effect of self-propulsion of a deformable body in a 
perfect fluid. It is well known that periodic surface deformations can lead to a self- 
induced persistent motion of the body. Here we consider the qualitative differences 
between self-propulsion effects of a deformable body which is placed in an otherwise 
quiescent fluid (Miloh & Galper 1993) and in a non-uniform ambient flow field (Galper 
& Miloh 1995). As demonstrated below, the self-propulsion mechanism in these two 
cases is essentially different. 

As a simple example, we analyse the case of a periodic instantaneous shape change 
from a surface Sl(x) say at t = 2nz-, to a surface &(x) at t = (2n + l ) ~ ,  where 22 
is the period and n = 0, 1, .... Since such an instantaneous change in S(x) occurs at 
t = mz, m = 0,1,2 ..., we define zf = lim,+o(z f v). Our interest lies here mainly 
in the case where z -P 0. For a quiescent ambient flow it is evident that such an 
impulsive deformation cannot produce any velocity of self-propulsion, due to the 
time reversibility nature of the deformation (see Childress 1981, Ch. 8 and Benjamin 
& Ellis 1990). It is also implied that the change in the body’s velocity during the 
deformation period is principally governed by the impulsive deformation force F r )  
(3.36), i.e. 

This inequality can always be satisfied by choosing a small enough z. 
The shapes S1 and S, must be simply connected so as to exclude the possibility of 

vortex shedding (as it is, for example, in the case of toroidal bubbles, e.g. Best 1993). 
The total rate of change of the deformation Kelvin impulse Js 4dn dS during a period 
is obviously zero. To demonstrate the basic differences between the self-propulsion 
mechanism in uniform and non-uniform flow fields, let us examine the simple case 
where S1 and S,  are both spherical with radii a1 and a2, respectively. By enforcing 
(5.6), one obtains 

where b denotes the rate of ‘volume change. In obtaining the last term in the right- 
hand side of (5.7), representing the effect of non-isochoric deformation, we use (3.36) 
which for a spherical shape gives 

Thus, for a pulsating sphere with a time-dependent radius, which is embedded in a 
non-uniform flow field, the deformation part of the force Fiil depends locally on the 
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ambient flow field V .  Furthermore, integrating (5.7) across the discontinuity from 
t = 0- to t = z-, one gets 
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( P b  + 4)(02U2 - 01 Ul) = i ( u 1  - 02)  v (x )*  (5.9) 

Note that in (5.9) U1 = U(O-), U2 = U(O+), U3 = U(z+) and u l ,  u2 denote the 
volumes at t = 0- and t = O+ respectively. It follows then from (5.6) that the sphere 
propels itself with a constant speed from O+ to z- and thus U(z-)  = U2. 

Integrating next (5.7) from z- to 22-, yields 

( P b  + i)(ulU3 -02U2) = i ( 0 2  - u l ) V ( x  + z(U2 f U3)). (5.10) 

Finally, by letting z -+ 0 and using both (5.9) and (5.10), one obtains the following 
ordinary differential equation which governs the sphere’s motion : 

- = = Y E ( X ) ~ + ~ E ( X ) V ( X ) + O  d U  dX ((y)2), (5.11) 
dt 

- = U ,  
dX 
dt 

with the constants 

Here D denotes the characteristic length scale of the flow non-uniformity and the 

UI,=o = U1. (5.12) 

initial condition for (5.11) is readily given by 

Assuming in addition that 
I Vl(X) lull (5.13) 

(i.e. a ‘fast motion’ relative to the ambient flow), one can neglect the last term in the 
right-hand side of (5.11) and reduce it to 

d U  d V  - 
dt - Ydt. (5.14) 

The latter can be also integrated to give 

U = U1 + y( V(X(t)) - V(0)).  (5.15) 

For the purpose of illustration, let us next choose a particular case where the 
ambient flow field V depends only on a single Cartesian coordinate coinciding with 
the direction of U1 (say, the y-axis with a corresponding z-axis in the orthogonal 
direction). Then, by enforcing (5.13) and integrating (5.14) one obtains, 

( U , )  = Y ((Vz (IUllt), - U O ) )  7 (5.16) 

where V = (Vx,  V,, V,) and U = ( U x ,  U,, U,). If V ,  is a space-periodic (stationary) 
flow field, then ( V ,  (I U1 It)) = 0, and thus 

(Uz) = -7 (VZ(0)).  (5.17) 

Hence, except for a motion with a constant velocity U1 (the case of a uniform 
flow), there arises, in addition, a persistent (non-zero) velocity of self-propulsion, 
given by -yV(O), in the direction orthogonal to U1. This extra term results from 
nonlinear parametric interactions between the body’s volume deformation and the 
non-uniformity of the stationary ambient flow. This newly found nonlinear mecha- 
nism of parametric resonance self-propulsion, is different in essence from the direct 
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self-propulsive mechanism. The later arises from linear resonant interactions between 
volume- and surface-deformation modes in a quiescent flow field (Miloh & Galper 
1993), or between body's deformations and non-uniform time-dependent ambient flow 
field (Galper & Miloh 1995). The case of periodic isochoric (volume-preserving) sur- 
face deformations of a bubble which is embedded in a stationary arbitrary non-uniform 
flow field has been recently treated by Galper & Miloh (1995). It is demonstrated 
there that the resonant frequency of the surface deformation is proportional to the 
magnitude of the flow non-uniformity. 

6. The first integral 
An important result which follows directly from the dynamical system (3.13), is 

that the latter always has a first integral for the case of a rigid body moving in a 
stationary flow field. This conclusion can be also considered as a generalization of the 
traditional familiar Kirchhoff integral for the motion of a rigid body in an otherwise 
quiescent fluid, i.e. 

i(pbvi + M)U * u + ;(/ + R)SL * SL + zu - = const. (6.1) 

In addition there exist two other first integrals (which also hold for a deformable 
body), 

p 2  = const, and p 1 = const, (6.2) 
where the generalized impulses are defined in (3.11)). The last two conservation laws 
reflect the properties of translational and reflectional invariance for the quiescent case 
and in general they cannot be generalized for an arbitrary ambient flow field. 

The motion of a solid body in a surrounding fluid, which is otherwise at rest, 
is known to be Hamiltonian (Novikov 1981) and for this reason (6.1) is indeed a 
manifestation of the energy conservation principle. In order to generalize the first 
integral (6.1) for the case of a non-uniform ambient flow field, we multiply both sides 

of (3.13) by 1," I and notice first 

Furthermore, by using the antisymmetry property (3.16), one finds that 

w(u,sz)T * ( U , l q T  = 0. (6.4) 

The next step is to show that the sum F(O) - U + M(O) SL can be written as a full 
time derivative. This can be done by substituting (3.31) for F!:; and (3.33) for M!:/, 
which by virtue of (2.9) lead to 

In deriving (6.5) we have used the definition (2.25) for the vector field V(x) and 
the symmetric property of the Green function G(OUt)(x, y ) .  Correspondingly, the Euler 
equation D / D t  V = -Vp ( p being the pressure) combined with the Bernoulli equation, 
implies that 
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Combining then (6.3) to (6.6) with the dynamical equation (3.13), yields 
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d I d  
- (f(pavi + M)U * U + i(/ + R ) S  * S + ZU * S )  - -- 1 V2dv 
dt 2dt  

which, upon time-integration finally gives 

In the absence of any imposed flow field V ,  h0 = 0 and (6.8) reduces to the classical 
Kirchhoff integral governing the motion of a rigid body in an otherwise quiescent 
fluid of infinite expanse. The last two additional terms in (6.8) have the physical 
meaning of work done against the pressure in placing the body into the ambient flow 
field at the point X .  The term -+ Js &(d&/dn)dS can be also interpreted as the 
kinetic energy of the surrounding flow field, induced by introducing a stationary body 
into the fluid. Similarly, the integral J, V 2  dv represents the kinetic energy of the 
fluid motion within the volume u,  when the body is absent. Thus, the first integral 
(6.8) is in fact a variant of the energy conservation principle, which can also be stated 
as : 

The kinetic energy of the rigid body plus the kinetic energy of the response motion 
of the fluid (due to the body’s motion), expressed in terms of the body’s added-mass 
tensor minus the kinetic energy of the ambientJEow$eld within v minus the kinetic 
energy of the response motion of the fluid (resulting from introducing the stationary 
body into thefluid) equals a constant. 

The first integral (6.8) clearly reveals the time-symmetry property of the present 
dynamical system, where the time enters into the formulation (for a stationary ambient 
flow field) only as a parameter in the boundary conditions. It is expressed in terms 
of the body’s coordinates and its geometrical parameters on one hand and the 
values of the prescribed ambient field V evaluated on the body’s surface S on the 
other. Written in the form (6.8), the first integral hinges upon a time translation 
symmetry of the system, which suggests that this first integral can be chosen as 
the Hamiltonian governing the body’s motion expressed in terms of the appropriate 
conjugated variables. 

7. Hamiltonian formalism 
In this section we prove for the first time the existence of the Hamiltonian approach 

to the motion of a deformable body in an arbitrary flow field. A formal Hamiltonian 
representation of the motion of a rigid body in a quiescent fluid, was first demonstrated 
by Lamb (1945, $132) and in terms of the modern framework of the Lie-Poisson 
brackets by Novikov (1981). 

The corresponding Hamiltonian is given by 

where the total mass matrix J is defined as 
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and the generalized impulse p and impulse couple I are given by (3.11) with 4 d  = 0. 
As general coordinates for the body we choose the six coordinates X and Q, with the 
conjugated moments p and I respectively. The standard Lie-Poisson brackets for the 
quiescent case, which correspond to the geometry of the phase space of the system, 
are degenerated due to the high symmetry of the system. Only after restriction on the 
surface of the level of the two first integrals (6.2), does the system admit introduction 
of the canonical Poisson brackets (Novikov 1981). 

The advantages of using Hamiltonian formalism for example for analysing bubble 
dynamics in an unbounded flow field otherwise at rest, have been recently pointed 
out by Benjamin (1987). Such a representation enables one to account for the 
conservations laws of bubble dynamics in a systematic way. Nevertheless, there exists 
a basic difference between Benjamin's Hamiltonian approach and the present one. The 
Hamiltonian suggested by Benjamin (1987, eq. (2.7)) governs the combined motion 
of a non-deformable bubble together with the surrounding fluid (including the bubble 
free surface). In contrast, in the present formalism the Hamiltonian for the body 
includes variables connected only to the body's motion. The influence of the ambient 
flow field is accounted for through a finite number of ambient parameters, functionally 
depending on the prescribed motion of the fluid (without the body). In other words, 
the problem of fluid motion in response to the body's motion is considered as resolved 
within the proposed framework. The corresponding Hamiltonian governs only the 
body's dynamics and is expressed in a body-attached coordinate system. Thus, it is 
indeed remarkable that the present fluid-body interaction problem, is reduced to a 
finite-dimension dynamical system, which still remains Hamiltonian. 

In order to express the equations of motion (3.13) for a deformable body in a 
Hamiltonian form, let us consider first the case of a translational motion without 
rotation (i.e. 52 = 0, Q = i). After establishing the particular form (3.24)-(3.26), one 
can construct the full Lagrangian for a non-rotating body as 

L(x; U )  = ia/u * u + K(& + 4 d )  U - n ( X ,  Q = i), (7.3) 

where the potential n(X ,Q)  is given by the two additional terms in the generalized 
Kirchhoff integral (6.8), plus two corresponding terms which account for the flow 
time-dependence and the body's deformations, namely 

The dynamical equation corresponding to (3.13) for the translational motion is given 
by 

and can also be written in the familiar Euler-Lagrange form as 

"("">=" dt dU ax' 
To prove that equations (7.5) and (7.6) are indeed equivalent one needs to substitute 
(7.3) into (7.6) and to use (3.3), (3 .9 ,  (3.24)-(3.26), (3.31), (3.36) and (3.38). It is worth 
mentioning here that a similar approach is used in the Hamiltonian description of a 
particle motion in an electro-magnetic field (Landau & Lifshitz 1989, $16). 

Applying next the Legendre transformation to the Lagrangian (7.3), leads finally 
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to the following Hamiltonian: 
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H ( X ; j )  = ;@ - K ( &  + 4 d ) )  ' J-'@ - K(& + 4 d ) )  + Z(x, Q = i), (7.7) 

where 

j = p  + K(&) = p  - @(n * V )  dS = p b  + K(&), (7.8) b 
and the body's momentum is defined as p b  = pbuU. Thus, it is shown that the 
canonical impulse conjugated to the coordinate X for a non-rotating body is simply 
given by the sum of the body's momentum and the additional Kelvin impulse K ( $ )  
of the surrounding fluid, resulting from introducing the moving deformable body into 
the fluid. The corresponding Poisson brackets acquire then the canonical structure 

Fi,Bjl = [Xi,Xjl = 0, [Xi,Bjl = d i j ,  (7.9) 

and the Hamiltonian equations of motion can thus be written in the traditional 
manner as (Olver 1986, Ch. 6) 

x i  = [X,,H], hi = @j,H], (7.10) 

with H given by (7.7). 
It can further be proven, that for an arbitrary motion of a deformable body in 

a non-uniform non-stationary flow field, the canonical conjugated coordinates and 
impulses are indeed X,j and 0,l' respectively. Here j is given by (7.8), and l' is 
similarly defined as 

l ' = f + P ( & ) = f -  Y ( n *  V)dS=fb+P($) ,  (7.11) 

where l b  = 152 represents the angular momentum of the rigid body and P($) denotes 
the Kelvin-impulse couple induced in the fluid by the moving (and generally rotating) 
deformable body. 

The corresponding Lagrangian, generalizing (7.7) for a rotating body, is given then 

J, 

by 

which for 52 = 0 and Q = i clearly reduces to (7.3). Supplementing (7.6) we have now 
the additional Euler-Lagrange equation corresponding to the variable Q, i.e. 

(7.13) 

where only three (among the nine) equations are in fact independent. The following 
relationship between time-derivatives in the two coordinate systems: 

d' -A+-, d 
dt dt 
- _  (7.14) 

should be applied in (7.13). To evaluate the terms d 5 2 / d d  and a52/aQ in (7.13) one 
should use (2.23). The operator d/dt is then calculated with the help of (2.26). By 
substituting the Lagrangian (7.12) in (7.6) and (7.13), one finally obtains (after some 
extensive calculations) the desired governing equation (3.13). 

In order to illustrate the calculation procedure let us show, for example, that the 
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term P($o)  - a in (7.12) gives rise to the matrix D in (3.13). Thus, starting with 

where we denote P = z (P)  (see (2.22)) and using next (7.15) one obtains ($4 - 2)  ( P a n )  = -9- 1 d’P - a .  -. aP 
2 dt ao 

(7.15) 

(7.16) 

The term d*P/dt is already evaluated in Appendix C as the ‘unsteady moment’. 
Employing the continuation (2.25), one can also verify that the last term in the right- 
hand side of (7.16) is equal to the a-part  of the right-hand side of (2.19) (compare 
with (C 16) for the ‘steady’ moment). This procedure leads (in a similar manner to 
Appendix C) to the expression for the matrix D given in (3.20) and (3.21). For reasons 
of brevity the details of other tedious calculations (similar to those presented in the 
Appendices B and C) are omitted here. 

The corresponding non-local Hamiltonian for a rotating body can be finally written 
(using the Legendre transformation) as 

It is noted here that for a rigid body embedded in a stationary flow field, the first 
integral H = const corresponds to the energy conservation law (6.8). As a concluding 
remark we underline again the fundamental physical significance of the Kelvin impulse 
and impulse couple (resulting from the body’s motion and expressed in the coordinate 
system moving with the body) as the natural variables in the present Hamiltonian 
formalism. 

8. A rigid body in a stationary stream 
8.1. Rate of spreading 

One of the intrinsic characteristics of an ambient flow field is the so-called ‘rate of 
spreading’ of small particles of a given shape S. It is literally defined as the sub- 
domain (part of the whole flow domain) which can be reached by particles initially 
placed in a small neighbourhood of X .  Note, that liquid particles spread through 
the irrotational motion, whereas for the spreading of rigid particles the situation 
is somewhat different because a rigid body can in fact rotate. Such a motion can 
indeed arrest the body within a bounded domain and induce in principle (even in 
a quiescent flow field) a spiral-like motion with possible closed trajectories (Novikov 
1981). Applications of the rate-of-spreading concept can also be found in other 
disciplines such as two-phase flows, chemical technology and Lagrangian chaos (e.g. 
Dahlen 1992). 

Let us apply the first integral (6.8) in order to determine the space domain reachable 
by a rigid body of shape S commencing its motion from the point X(0) .  The first 
integral does not include any information about the matrix W, but, nevertheless, some 
general useful qualitative observations can be stated, as demonstrated below. 

We start with the following inequality: 
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where I I  2 A2 2 13 2 0 are the three eigenvalues of the symmetric translational 
added-mass tensor M. The inequality (8.1) follows from the representation 

and the inequality 

which can be defined for any compact self-adjoint operator K with a norm IKJ acting 
in the space of the quadratically summarizable functions f(x) on S .  Since 

l(,, V2dv < v (max X€S(t) V 2 )  , 

one finally obtains 

where the potential n(t)  is defined for a rigid body embedded in a stationary flow 
field (see (7.4)) as 

Here S ( t )  actually means S ( X ( t ) ) ,  i.e. the centroid of the body is located at the point 
X ( t ) .  

Next, we rewrite the first integral (6.8) in the following form: 

E b ( t )  + n(t)  = f n(O), (8.7) 

where the effective kinetic energy of the body (expressed in terms of its added-mass 
tensor) is given by 

Eb(t) i ( / ? b t ' i  + M)u - u + ;(I  + R)f2 * f2 + zu f2. (8.8) 

(8.9) 

Since E b  2 0, it follows from (8.7) that 

n(t)  < E b ( O )  + n(o), 

or, by using (8.5) 

(8.10) 

Hence, for a body which is initially at rest (i.e. Eb(0) = 0), the possible reachable 
domain of motion is bounded by 

(8.11) 

It also follows from (8.11) that if I V ( ( X )  -+ 0 when 1x1 --+ 00, then the motion of 
an initially stationary body is always bounded. Indeed, the left-hand side of (8.11) 
tends to zero at infinity whereas the right-hand side always remains positive. This 
clearly contradicts the inequality (8.1 1). The inequality (8.1 1) determines the space 
sub-domain which cannot be reached by an initially stationary rigid particle which is 
released at X(0) .  Thus, the sub-domains for which (8.11) is not valid are unreachable 
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by the particles because the rigid body does not have enough kinetic energy to get 
there. One can deduce therefore from (8.11) that the larger is the first eigenvalue A1 

(for a given v), the higher is the spreading rate of rigid particles. Physically speaking, 
an elongated body is more likely to align itself along the direction of the streamlines 
of the ambient flow. It also follows from (8.11) that particles passing near stagnation 
zones generally experience a larger spreading rate, such as, for example, the motion 
in the velocity field induced by a Koda vortex (see Dahlen 1992). 

8.2. Bounds on body’s velocities 
Invoking the first integral (6.8), one can show interestingly enough that the velocities 
of the rigid body are all bounded and are correlated with the velocity of the ambient 
flow field, evaluated on the body’s surface. Thus, using (8.7) and (8.5) one obtains 

where the initial parameter co is defined as 

Co = Eb(0) f n(0). 

(8.12) 

(8.13) 

Correspondingly, it follows from (8.12) and the definition (8.8) that the modulus of 
the body’s velocity is always bounded from above by 

A similar upper bound can be also found for the angular velocity, i.e. 

(8.14) 

(8.15) 

where PI B p2 B ~3 B 0 are the three positive eigenvalues of the tensor / + f?. 
For the purpose of illustration of the general bounds thus found, we consider 

an initially stationary spherical bubble, located at a stagnation point (where co << 
&) V2dv) ,  for which p b  = 0, A1 = 22 = A3 = i v  and Eb = 0. Equation (8.14) implies 
then that 

(8.16) 

where the lower bound for a non-rotating body follows from (8.7) and the inequality 

- 1 V 2  dv 2 n(t) .  (8.17) 

Thus, following (8.16) the motion of a rigid spherical particle physically resembles 
that of a liquid particle. 

9. Ellipsoidal family 
9.1. Ellipsoids 

The ellipsoidal family is the simplest class of three-dimensional smooth shapes for 
which the foregoing analysis can be further simplified. On the other hand, it is well 
known that small bubbles cease to be spherical beyond a certain size and resemble 
instead oblate spheroidal shapes. The main property of the motion of such forms in 
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a quiescent fluid is the tendency towards chaotization of the motion for nearly all 
shapes (see Aref & Jones 1993), except for some degenerate cases (such as spheres 
or Clebsh forms (Kozlov & Onichenko 1982)). The fact that the translation of the 
body cannot in principal be separated from the rotational motion when moving in a 
heavy fluid (in contrast with rigid body dynamics in vacuum) manifests itself in the 
above-mentioned possible chaotization of the rotational and translational motions 
and in the resulting permanent redistribution of kinetic energy between all degrees of 
freedom. 

Let us consider, for example, an ellipsoidal quadratic shape. Substituting (5.3) in 
(3.25) and using the Gauss theorem yields 

K($o) = --M V dv. 
V ' 1  

Hence, using (3.24) one derives 

V 

1 
AU = -(Vx A K($o)) A U = --(V,y A MK(4))  A U = 

V 

(9.2) 
which suggests that the matrix A for an ellipsoidal shape can be simply expressed in 
terms of the Kelvin impulse of the ambient flow field. Clearly, if the Kelvin impulse 
K ( 4 )  is an eigenvector of M (say, the ambient stream is aligned along the direction 
of one of the added-mass eigenvectors), then A identically vanishes. 

9.2. The governing equation for  a sphere 

For a sphere one obtains M = ivi, Y = 0 and by virtue of the last identity in the 
right-hand side of (9.2), it follows that 

W s p h  = 0. (9.3) 

Similarly, one obtains from (3.20) that D also vanishes and the consequent use of 
the Gauss theorem and the mean theorem of harmonic functions for (3.17) lead to 
B = C = 0. Thus, Wsph = 0, since sphere's rotation is immaterial in a perfect flow 
field. 

Using, next the Weiss theorem (Milne-Thomson 1968) for $0, i.e. 
1 

4(ox)do 1 , (9.4) $ 0 ( 4  I s =  4 I s  -1 
S 

in conjunction with (3.31), (3.36) and (5.8), results in the following expression for the 
force acting on a stationary sphere with a time-dependent radius r = a(t): 

The corresponding generalized Kirchhoff equation is finally obtained in the form 

1 dv 
dt ) 2 d t  

1 

0 ( V ( X )  - V(ax))da dv + -- V, (9.6) 

where all variables are now expressed in the laboratory coordinate system, because 
the rotation of the sphere does not enter into the formulation (see also Biesheuvel 
1985). 

For a translating sphere (SZ = 0), (9.6) can be written in the form of a Newtonian 
equation of motion for a rigid particle placed in a time-dependent effective potential 
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field nsph(X, t ) ,  which depends quadratically on the ambient flow field V (compare 
with (7.5)), i.e. 

where the potential nsph is given by 

3 d 4  1dv 
nsph(X, t )  = --: L V’dv-; 1’ CJ (L V ( x )  - ( V ( x )  - V(ax)) dv ) da--u----4 2 dt 2 d t  ’ 

(9.8) 
For a rigid spherical shape embedded in a weakly non-uniform flow field, the last 
integral in the right-hand side of (9.6) is clearly of O(c2) .  This can be also verified 
by pulling E in front of the integrals and using the mean theorem for the harmonic 
function V .  Thus, for a rigid sphere placed in a weakly non-uniform stream, one 
obtains from (9.6)-(9.8) 

which, for a massless bubble( P b  = 0) coincides exactly with Auton, Hunt & 
Prud’homme (1988, eq. (4.1)). For a neutrally buoyant ( P b  = 1) sphere letting 
U(0)  = V ( 0 )  implies that U(t) = V(t). The equation of motion (9.6) reduces in this 
case to the Euler equation for a liquid particle. 

9.3. Ambient $ow fields with a symmetry 
The proposed Hamiltonian formalism of the body’s motion also suggests that if a 
certain symmetry of the body’s surface coincides with that of the ambient flow field, 
then an additional integral of motion must also arise. Thus, if, for example, the 
imposed flow field V has a central symmetry, then the effective potential nSph for 
a sphere also inherits a central symmetry. In this case the problem appears to be 
completely integrable, similar to the corresponding classical problem in rigid-body 
dynamics. 

Consider, for example, an exterior source jsink) with an output s(t) lying in the 
proximity of a pulsating sphere at the point X .  One can show then that 

where 

(9.10) 

(9.11) 

which represents an attraction force near the source (sink). Nevertheless, far from 
the body, the second term in (9.10) starts to dominate and the total force can be 
therefore of repulsion or attraction, depended on the sign o f f .  It is also interesting 
to note that after time averaging, the term (f) = (vds/dt), is generally non-zero and 
gives rise to the common Bjerkness force in bubble dynamics. 

Moreover, the symmetry of nsph can be of a higher degree than the symmetry of the 
ambient flow field. Thus, the potential of a simple gravity wave (in a coordinate system 
moving with the wave) is given by 4 - e-@) cos (klx + k2y), where k2 = k: + k i .  The 
direct calculations using (9.8) show no dependence of nsph on the x- and y-coordinates, 
which implies that the sphere’s impulse in the x,y-directions is conserved. 

One can also consider the common case of an axisymmetric body, initially aligned 
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along the axis of symmetry of an axisymmetric external flow. It can then be readily 
shown that the dynamical system is fully integrable, provided the initial velocities 
U(0) and O(0) of the body are collinear with the axis of symmetry of the imposed 
stream. Indeed, the resulting motion of the body is essentially one-dimensional and 
therefore the first integral of motion (6.8) is precisely the one needed to perform the 
full integration. 

As a final remark we note that by expanding V in (9.6) in a Taylor series about 
the sphere’s centre, one recovers the analytic expression recently obtained by Miloh 
(1994) for the axial force experienced by a rigid sphere placed in a non-uniform 
axisymmetric flow field. 

10. Summary and conclusions 
We have derived here the corresponding system of six nonlinear ordinary differ- 

ential equations of the second order which govern the motion of a deformable body, 
embedded in a perfect non-uniform non-stationary ambient flow field. The newly ob- 
tained dynamical system of equations generalizes the well-known Kirchhoff equations 
corresponding to the motion of a rigid body placed in a quiescent flow field. It is 
proven that this general system exhibits a very special antisymmetric (gyroscopic) 
property. 

A first integral of motion is shown to always exist for a rigid body moving 
in a stationary flow field. This first integral has the physical meaning of an energy- 
conservation principle and hence reflects the time-symmetry property of the combined 
system (without memory) comprising ‘rigid body plus stationary potential stream’. If 
the surrounding fluid is otherwise at rest (i.e. V = 0), the first integral reduces to the 
conventional Hamiltonian (Novikov 1981). 

It is further demonstrated that a general motion of a deformable body (i.e. one 
which combines translation, rotation and deformation) embedded in an arbitrary 
ambient flow field is always Hamiltonian. The explicit form of the corresponding 
non-local Hamiltonian is also determined. The canonical generalized impulses are 
conjugated to the coordinates of the body’s centroid X and the matrix Q (connecting 
the laboratory and the body-attached coordinate systems). The canonical generalized 
impulses are expressed as a sum of the body’s linear/angular momentum and the 
Kelvin impulse/impulse couple of the ambient flow resulting from the body’s rigid 
and deformation motion. 

For the case of a rigid body placed in a stationary stream, the corresponding 
Hamiltonian coincides with the above-mentioned first integral of motion, written in 
terms of the generalized coordinates X , Q  and the generalized impulses. Note, also 
that the motion of a non-rotating deformable body is mathematically equivalent to the 
motion of a non-isotropic particle embedded in an effective non-stationary magnetic 
and electrical field. Thus, for the particular common case of a pulsating spherical 
shape, the motion in a non-uniform stream is similar to the motion of a particle in 
an effective potential force field which quadratically depends on the ambient velocity 
field. 

As a direct consequence of the existence of the first integral, it is proven that the 
motion of an initially stationary rigid body is always bounded, regardless of the shape 
of the ambient flow pathlines. It is further noted that the spreading rate of rigid 
particles is larger for particles which are injected near stagnation points. It is also 
remarked that an elongated shape is generally the preferable shape, when trying to 
maximize the larger spreading rate. 
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In addition, it is proven that the presence of an ambient non-stationary flow field 
tends to considerably enhance the effect of a persistent self-propulsion. Following 
Miloh & Galper (1993), a deformable (non-isochoric) spherical shape is shown to be 
the 'worst' self-propulsor. However, it is demonstrated that even a sphere undergoing 
only simple symmetric volume deformations can indeed develop a persistent velocity 
of self-propulsion, as a result of nonlinear interactions with the surrounding non- 
homogeneous stationary flow field. Here the self-propulsion phenomenon appears to 
be a manifestation of parametric resonant interactions between the body's deformation 
and the flow non-uniformity. Thus, as an example, the 'dancing-bubble' effect analysed 
by Benjamin & Ellis (1990) for a single bubble, is much more pronounced in a bubble 
cloud. This is not only as a result of the symmetry-breaking phenomena (Miloh & 
Galper 1993), but also due to the additional parametric resonant mechanism between 
a single bubble and the effective flow non-uniformity in a cloud. 

A.G. acknowledge the support of the Colton Fund and both authors that of the 
Israel Science Foundation. 

Appendix A. Derivation of the classical Kirchhoff equations for a 
deformable body 

first term in the right-hand side of (2.11), as 
The force -F(q)  acting on a deformable body in a quiescent fluid is given by the 

In accordance with (3.7) and (3.9) one obtains 

l((i @ + + $d) ' n dS = - (MU +zo +K($d)). (A 2) 

Using finally (7.14) one derives the Kirchhoff term F(q)  for a deformable body given 
by (3.3) and (3.5). Correspondingly for a quiescent fluid is expressed by the 
first two terms of (2.12), i.e. 

-M(q)  = ; i i l ( U . @ + n -  y+$d)xAndS+UA ( U . @ + a .  y+$d)ndS. (A3) h d' 

Enforcing then (3.7) and (3.9) yields 

d' 
dt (U @ + S2 - Y + $ d )  x A n  dS = -- (ZTU 4- RS2 4- P($d)). 

Using finally (A2) and (A4) one obtains the desired expressions (3.4) and (3.6) for 
the Kirchhoff moment acting on a deformable body. 

Appendix B. Evaluation of expressions (3.17) for A and (3.16) for 6 

B.l. The unsteady force 
In order to evaluate (3.16) and (3.17) let us first calculate the unsteady part of the 
force, given by the first term in the right-hand side of (2.11) (see Appendix A) as 
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where we recall that V = V x + ( X )  and that d*/dt represents the time derivative in 
the laboratory coordinate system. 

It is further noted that 

where m is given by (3.10). Hence, because of (2.8), and using (7.14) one obtains 

(B 2) 
J m V  dS = Q A L m V  dS + Tii d L m V  dS. 

The vector field V ( x )  in (B2) is determined in accordance with (2.25) and (2.26), 

dt s 

from where one can immediately deduce using (2.23) that 

m(Q A V )  dS + mQTE* (U' + Q(Q A x)) dS b 
m V d S  

m(Q A V )  dS + mE(S2 A x )  dS + =-b b 
mVdS. 

The rate-of-strain tensor E* is defined in the laboratory coordinate system as 

E' = v x .  v*, E = Q ~ E ' Q ,  (B 4) 

and the 'deformation' time-derivative operator in (B 3), (i.e. time-dependence only 
due to pure deformations) is denoted here by 6 / 6 t .  Gathering then (B2) and (B3) 
one obtains 

$ L m V  dS = i(Q AmV - m(Q A V))dS + mE(Q A x  + U )  dS 

+ 
In a similar manner, it can be shown that 

- J n g ( x ) d S = o A  n 4 d S f T i i  d J n 4 d S ,  d" 
(B 6 )  

S dt s 

and 

(B 7) 
d d a+ 
- g ( x )  dt dt a t  

-+(X + Qx)  = Q * ( X  A V )  + V . U + -. 
Thus, 

/ n 4 ( x )  dS = SZ A / n g ( x )  dS - l n ( x  - (Q A V ) )  dS + 
dt s S 

Taking then into account the fact that V,+(Qx) = QTVx.+(x*)  = V ( x ) ,  and using the 
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Gauss theorem, leads to 

Finally, by substituting (B 9) and (B 3) into (B l), one obtains 

n( V U )  dS - mEU dS 

+ E(RAx)dv+ (m(RA V ) - R A m V )  dS-  

h 
I h 

which should be added to F,, in order to obtain the expressions sought for AU and 
BR. 

B.2. The steady force 
Using (2.18) for the steady part of the force and subtracting from (2.18) terms 
proportional to U (denoted here by A,,U), gives 

ASt U = (Em' U - ( U  * n) V) dS. (B 11) 

Combining (B 11) for the terms containing U in the steady part of the force and 
adding (B 10) for the U-terms in the unsteady part, renders 

A = (Em' - mE) dS, b 
which is exactly the desired expression (3.16). Correspondingly, the contribution from 
the R-terms in (2.18) (denoted here by B,,R), is given by 

The last term in (B 13) can be also written by using the Gauss theorem as 

1 V (n * (x A a)) dS = E(x A a) dv I (B 14) 

which is shown to cancel a similar term in Fun (see (B 10)). Thus, finally one obtains 

6R= ( ~ ( R A  V ) - R r \ m V )  d S - l m E ( a A x ) d S + S E r ' . n d S ,  (B15) h S S 

which is identical with (3.17). 

Appendix C. Evaluation of expressions (3.18) for C and (3.20) for D 

According to (2.12), the total moment can be separated into a 'steady' and an 
'unsteady' components. The steady part M,,, is defined by (2.19), whereas the 
unsteady component Mu,, is represented by the first two terms of (2.12), i.e. 
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where $ is given by (2.7). The unsteady part of the moment can be evaluated in a 
similar manner to the unsteady part of the force as described in Appendix B, SB.1. 

C.l. The unsteady moment 
Let us use (2.7), (2.8) and Appendix A in order to rewrite (C 1) as 

from which we deduce that 

4 ( x A n )  dS = f2A c$(xAn) dS + ( x A n ) a  * ( x A  V )  dS + ( x A n ) (  V * U )  dS I I 
+ z ( x  A n)  dS + 

d' 

Furthermore, by using the Gauss theorem, the first two integrals in the right-hand 
side of (C4) can be written as 

f 2 A  $ ( x A n ) d S = Q A  xAVdv, 1 1 
l ( x A n ) ) R . ( x A  V)dS = (f2A V)Axdu+ xAE(f2Ax)dv. 1 1 

1 1 1 

and 

(C 5 )  

Using then the relationship 

f 2 A  ( x A  V)dv+ (52A V)Axdv= (SZAx)A Vdv, (C 6 )  

which follows from the Jacobi identity 

Q A ( X A  v ) + x A ( v A ~ ) +  V A ( ~ A X ) = O ,  (C 7) 

we finally obtain 

+ ( x A n ) V . U d S +  (C 8) I I 
The first integral in the left-hand side of (C2), i.e. 
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can be treated by the same approach as outlined in Appendix B, SB.1, by simply 
replacing @ by Y .  Such a procedure leads to 

Mu, = -M(') + C,,U + D,,0 + 

Using the above, one can also derive the following expressions for C,,U and D,,S: 

( x A n ) ( V - U ) d S + U A  

and 

( z ( S A  V) -SAzV)  dS- 

+ ( ( S A X ) A V + X A E ( ~ ~ A X ) )  dv. (C 12) 

As demonstrated in what follows, the last two terms of (C 10) and the last two terms 
of (C12) precisely cancel the corresponding terms in the expression for the steady 
part of the moment. 

J! 

C.2. The steady moment 
Employing for the steady part of the moment the same approach previously used for 
evaluating the steady part of the force yields 

from where, by subtracting the U-part from (2.19) one gets 

Cst U = ( U  * @)(n A V )  dS + ( U  * @)(x A En) dS - ( U  * n)(x  A V )  dS. (C 14) 1 1 1 
CU = 1 ((mV) A U - V A(mU) +xA(Em*U) -zEU) dS, 

Adding then (C lo), (C 12) and (C 14), and noting that C = C,, + Cst, renders 

(C 15) 

since (C 10) cancels the last integral in the right-hand side of (C 14). 
Similar considerations for the contributions of the S-terms in (2.19) lead to 

(C 16) 1 A V )  dS - (0 (X A n)) (X A V )  dS. 

Here again the last integral in (C 16) cancels the corresponding term in the expression 
for D u n 0  (C 12). Indeed, one gets 

/S-(xAn)(xAV)dS S = 1 ( (0Ax).V)xAVdv=/((0Ax)A u V + x A f ( 0 A x ) )  dv, 

which is identical with (C 12). 
(C 17) 
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Finally, by adding (C ll), (C 12) and (C 16), we find that 

in full agreement with (3.20) and (3.21). 
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